Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese journal of integrative medicine ; (12): 896-904, 2021.
Article in English | WPRIM | ID: wpr-922097

ABSTRACT

OBJECTIVE@#To investigate a Met-controlled allosteric module (AM) of neural generation as a potential therapeutic target for brain ischemia.@*METHODS@#We selected Markov clustering algorithm (MCL) to mine functional modules in the related target networks. According to the topological similarity, one functional module was predicted in the modules of baicalin (BA), jasminoidin (JA), cholic acid (CA), compared with I/R model modules. This functional module included three genes: Inppl1, Met and Dapk3 (IMD). By gene ontology enrichment analysis, biological process related to this functional module was obtained. This functional module participated in generation of neurons. Western blotting was applied to present the compound-dependent regulation of IMD. Co-immunoprecipitation was used to reveal the relationship among the three members. We used IF to determine the number of newborn neurons between compound treatment group and ischemia/reperfusion group. The expressions of vascular endothelial growth factor (VEGF) and matrix metalloproteinase 9 (MMP-9) were supposed to show the changing circumstances for neural generation under cerebral ischemia.@*RESULTS@#Significant reduction in infarction volume and pathological changes were shown in the compound treatment groups compared with the I/R model group (P<0.05). Three nodes in one novel module of IMD were found to exert diverse compound-dependent ischemic-specific excitatory regulatory activities. An anti-ischemic excitatory allosteric module (AM@*CONCLUSIONS@#AM


Subject(s)
Animals , Brain Ischemia/drug therapy , Gene Ontology , Gene Regulatory Networks , Rodentia , Vascular Endothelial Growth Factor A
SELECTION OF CITATIONS
SEARCH DETAIL